Compare commits

...
Sign in to create a new pull request.

3 commits

Author SHA1 Message Date
1323b16890 Update README.md 2025-06-03 06:54:00 +00:00
b12ae5b0cb added comments 2025-06-03 01:40:44 +02:00
70aad3fe1c simple and functional 2025-06-03 01:25:44 +02:00
7 changed files with 132 additions and 352 deletions

View file

@ -1,4 +1,4 @@
/* ### Erklärung der Praktikumsaufgabe (Synchronisation)
### Erklärung der Praktikumsaufgabe (Synchronisation)
#### **Kernziel der Aufgabe**
Sie sollen ein **multithreaded Sensornetzwerk** simulieren, das drei Komponenten umfasst:
@ -152,4 +152,3 @@ Mit dieser Struktur erfüllen Sie alle Lernziele:
✅ Reader-Writer-Problem
✅ Producer-Consumer-Pattern
✅ Vermeidung von Race Conditions & Deadlocks!
*/

View file

@ -1,75 +1,32 @@
#pragma once
#include <mutex>
#include <condition_variable>
/**
* Implementiert das Reader-Writer Problem mit:
* - Mehrere gleichzeitige Leser
* - Exklusiver Zugriff für Schreiber
* - Verhindert Writer-Starvation
* Thread-sicheres Analysemodell
* Vereinfachte Implementierung mit:
* - Einfachem Mutex-Schutz (kein Reader-Writer-Lock)
* - Für seltene Schreibzugriffe geeignet
*/
class AnalysisModel {
int value = 0; // Das geteilte Analysemodell (vereinfacht)
int reader_count = 0; // Zählt aktive Leser
// Synchronisationsprimitive
std::mutex model_mutex; // Schützt Schreibzugriffe (exklusiv)
std::mutex count_mutex; // Schützt Leserzähler
std::condition_variable no_writer; // Garantiert Fairness
int value = 0; // Der gespeicherte Wert
std::mutex mtx; // Schützt Lese/Schreibzugriffe
public:
/**
* Lesender Zugriff
* @return Aktueller Wert des Modells
*
* Funktionsweise:
* 1. Sperrt count_mutex und inkrementiert reader_count
* 2. Erster Leser sperrt model_mutex (blockiert Writer)
* 3. Entsperrt count_mutex während des Lesens
* 4. Liest Wert
* 5. Sperrt count_mutex zum Dekrementieren
* 6. Letzter Leser entsperrt model_mutex und benachrichtigt Writer
* Liest den aktuellen Wert
* @return Der gespeicherte Wert
*/
int read() {
std::unique_lock<std::mutex> count_lock(count_mutex);
reader_count++;
// Erster Leser sperrt für Writer
if(reader_count == 1) {
model_mutex.lock();
}
count_lock.unlock();
// Kritischer Abschnitt (Lesen, kann parallel erfolgen)
int result = value;
count_lock.lock();
reader_count--;
// Letzter Leser gibt für Writer frei
if(reader_count == 0) {
model_mutex.unlock();
no_writer.notify_one();
}
return result;
std::lock_guard<std::mutex> lock(mtx);
return value;
}
/**
* Schreibender Zugriff
* @param new_value Neuer Wert für das Modell
*
* Funktionsweise:
* 1. Sperrt model_mutex (exklusiver Zugriff)
* 2. Schreibt neuen Wert
* 3. Wartet bis alle Leser fertig sind (Starvation Prevention)
* Schreibt einen neuen Wert
* @param new_val Der neue Wert
*/
void write(int new_value) {
std::unique_lock<std::mutex> lock(model_mutex);
value = new_value;
// Verhindert Writer-Starvation
no_writer.wait(lock, [this]() {
return reader_count == 0;
});
void write(int new_val) {
std::lock_guard<std::mutex> lock(mtx);
value = new_val;
}
};

View file

@ -1,90 +1,26 @@
#include "sensor_network.h"
#include <iostream>
#include <string>
#include <limits>
#include <thread>
// Standardkonfiguration
constexpr size_t DEFAULT_NUM_SENSORS = 3;
constexpr size_t DEFAULT_NUM_ANALYSERS = 2;
constexpr int DEFAULT_RUN_TIME = 30; // Sekunden
constexpr size_t DEFAULT_BUFFER_SIZE = 8;
/**
* Führt die Simulation mit gegebenen Parametern aus
* @tparam N Puffergröße
* Hauptprogramm
* Startet die Simulation mit festen Parametern
* (Könnte leicht für interaktive Eingabe erweitert werden)
*/
template<size_t N>
void run_simulation(size_t num_sensors, size_t num_analysers, int run_time) {
SensorNetwork<N> network;
std::cout << "\n=== Simulation gestartet ===\n"
<< "Sensoren: " << num_sensors << "\n"
<< "Analysemodule: " << num_analysers << "\n"
<< "Puffergröße: " << N << "\n"
<< "Laufzeit: " << run_time << "s\n\n";
int main() {
// Netzwerk mit Puffergröße 8 erstellen
SensorNetwork<8> network;
network.start(num_sensors, num_analysers);
std::this_thread::sleep_for(std::chrono::seconds(run_time));
std::cout << "Starting simulation...\n";
// 2 Sensoren und 2 Analyse-Module starten
network.start(2, 2);
// 30 Sekunden laufen lassen
std::this_thread::sleep_for(std::chrono::seconds(30));
// Netzwerk stoppen
network.stop();
std::cout << "\n=== Simulation beendet ===\n";
}
/**
* Liest Benutzereingabe mit Standardwert
* @param prompt Eingabeaufforderung
* @param default_value Standardwert bei leerer Eingabe
* @return Eingegebener oder Standardwert
*/
size_t get_input(const std::string& prompt, size_t default_value) {
std::cout << prompt << " [" << default_value << "]: ";
std::string input;
std::getline(std::cin, input);
// Verwende Standardwert bei leerer Eingabe
if(input.empty()) return default_value;
// Konvertiere Eingabe
try {
return std::stoul(input);
} catch(...) {
std::cout << "Ungültige Eingabe. Verwende Standardwert: "
<< default_value << "\n";
return default_value;
}
}
int main() {
std::cout << "=== Sensornetzwerk-Simulation ===\n"
<< "(Leere Eingabe verwendet Standardwerte)\n";
// Interaktive Konfiguration
size_t num_sensors = get_input("Anzahl Sensoren", DEFAULT_NUM_SENSORS);
size_t num_analysers = get_input("Anzahl Analysemodule", DEFAULT_NUM_ANALYSERS);
int run_time = static_cast<int>(
get_input("Laufzeit (Sekunden)", DEFAULT_RUN_TIME)
);
size_t buffer_size = get_input("Puffergröße", DEFAULT_BUFFER_SIZE);
// Starte Simulation basierend auf Puffergröße
switch(buffer_size) {
case 8:
run_simulation<8>(num_sensors, num_analysers, run_time);
break;
case 16:
run_simulation<16>(num_sensors, num_analysers, run_time);
break;
case 32:
run_simulation<32>(num_sensors, num_analysers, run_time);
break;
default:
std::cout << "Nicht unterstützte Puffergröße. Verwende Standard ("
<< DEFAULT_BUFFER_SIZE << ")\n";
run_simulation<DEFAULT_BUFFER_SIZE>(
num_sensors, num_analysers, run_time
);
}
std::cout << "Simulation erfolgreich abgeschlossen.\n";
std::cout << "Simulation finished\n";
return 0;
}

View file

@ -1,104 +1,63 @@
#pragma once
#include <vector>
#include <cstddef>
#include <array>
#include <mutex>
#include <condition_variable>
/**
* Thread-sicherer Ringpuffer mit fester Größe
* @tparam N Größe des Puffers (muss > 1 sein)
*
* Implementiert das Producer-Consumer Pattern mit:
* Thread-sicherer Ringpuffer mit fester Größe N
* Implementiert das Producer-Consumer-Pattern mit:
* - Mutex für exklusiven Zugriff
* - Condition Variable für blockierendes Pop
* - Condition Variable für blockierendes Lesen
* - Überschreibt älteste Daten bei vollem Puffer
*/
template <size_t N>
class RingBuffer {
static_assert(N > 1, "Buffer size must be greater than 1");
std::array<int, N> data; // Speicher für die Elemente
size_t read = 0; // Lese-Position
size_t write = 0; // Schreib-Position
bool full = false; // Flag für vollen Puffer
private:
std::vector<int> data; // Speicher für Elemente
size_t read_ptr = 0; // Lesezeiger (nächstes zu lesendes Element)
size_t write_ptr = 0; // Schreibzeiger (nächstes freie Position)
bool full = false; // Flag, ob Puffer voll ist
// Synchronisationsprimitive
std::mutex mtx; // Schützt alle internen Zustände
std::condition_variable not_empty; // Signalisiert, dass Daten verfügbar sind
// Hilfsfunktion: Zeiger mit Ringverhalten bewegen
size_t advance(size_t ptr) const {
return (ptr + 1) % N;
}
std::mutex mtx; // Schützt alle Zugriffe
std::condition_variable cv; // Synchronisiert Leser
public:
RingBuffer() : data(N, 0) {}
/**
* Schreibt Wert in den Puffer
* Schreibt einen Wert in den Puffer
* @param value Der zu schreibende Wert
*
* Funktionsweise:
* 1. Sperrt Mutex für exklusiven Zugriff
* 2. Schreibt Wert an aktueller write_ptr
* 3. Bei vollem Puffer: Bewegt read_ptr (überschreibt ältesten Wert)
* 4. Aktualisiert write_ptr und full-Flag
* 5. Benachrichtigt einen wartenden Consumer
* Funktionsablauf:
* 1. Sperrt den Puffer mit Mutex
* 2. Schreibt Wert an aktueller Position
* 3. Überschreibt ältesten Wert wenn voll
* 4. Aktualisiert Schreib-Position
* 5. Benachrichtigt wartende Leser
*/
void push(int value) {
std::unique_lock<std::mutex> lock(mtx);
// Schreibe Wert
data[write_ptr] = value;
// Überschreibe ältesten Wert bei vollem Puffer
if(full) {
read_ptr = advance(read_ptr);
}
// Zeiger aktualisieren
write_ptr = advance(write_ptr);
full = (write_ptr == read_ptr);
// Benachrichtige einen wartenden Consumer
not_empty.notify_one();
std::lock_guard<std::mutex> lock(mtx);
data[write] = value;
write = (write + 1) % N; // Ringverhalten
if (full) read = (read + 1) % N; // Überschreiben
full = (write == read); // Update Voll-Flag
cv.notify_one(); // Wecke einen Leser
}
/**
* Liest Wert aus dem Puffer (blockierend)
* Liest einen Wert aus dem Puffer (blockierend)
* @return Der gelesene Wert
*
* Funktionsweise:
* 1. Sperrt Mutex
* 2. Wartet mit Condition Variable bis Daten verfügbar
* 3. Liest Wert an read_ptr
* 4. Aktualisiert read_ptr und full-Flag
* 5. Gibt Wert zurück
* Funktionsablauf:
* 1. Sperrt den Puffer
* 2. Wartet bis Daten verfügbar
* 3. Liest Wert und aktualisiert Position
* 4. Gibt Wert zurück
*/
int pop() {
std::unique_lock<std::mutex> lock(mtx);
// Warte bis Daten verfügbar (verhindert Busy Waiting)
not_empty.wait(lock, [this]() {
return !is_empty();
});
// Lese und aktualisiere Zustand
int value = data[read_ptr];
read_ptr = advance(read_ptr);
full = false;
return value;
}
// Prüft ob Puffer leer ist
bool is_empty() const {
return !full && (read_ptr == write_ptr);
}
// Prüft ob Puffer voll ist
bool is_full() const {
return full;
// Warte bis Daten da sind (verhindert Busy Waiting)
cv.wait(lock, [this]{ return full || write != read; });
int val = data[read];
read = (read + 1) % N; // Ringverhalten
full = false; // Nicht mehr voll
return val;
}
};

Binary file not shown.

View file

@ -4,135 +4,76 @@
#include <chrono>
/**
* Startet alle Threads des Netzwerks
* @param num_sensors Anzahl der Sensor-Threads
* @param num_analysers Anzahl der Analyse-Threads
* Startet das Sensornetzwerk
* @param sensors Anzahl der Sensor-Threads
* @param analysers Anzahl der Analyse-Threads
*/
template <size_t N>
void SensorNetwork<N>::start(size_t num_sensors, size_t num_analysers) {
void SensorNetwork<N>::start(size_t sensors, size_t analysers) {
running = true;
// Starte Sensor-Threads
for(size_t i = 0; i < num_sensors; ++i) {
sensors.emplace_back([this, i] {
sensor_thread(i);
// Sensor-Threads erstellen
for (size_t i = 0; i < sensors; ++i) {
threads.emplace_back([this] {
std::mt19937 gen(std::random_device{}());
std::uniform_int_distribution<> dist(0, 100);
while (running) {
// Zufälliges Intervall (100-500ms)
std::this_thread::sleep_for(
std::chrono::milliseconds(100 + gen() % 400));
// Messwert generieren und speichern
buffer.push(dist(gen));
}
});
}
// Starte Analyse-Threads
for(size_t i = 0; i < num_analysers; ++i) {
analysers.emplace_back([this, i] {
analyser_thread(i);
// Analyse-Threads erstellen
for (size_t i = 0; i < analysers; ++i) {
threads.emplace_back([this] {
while (running) {
// Daten aus Puffer lesen
int data = buffer.pop();
// Analysemodell lesen
int model_val = model.read();
// Ausgabe (könnte auch analysieren)
std::cout << "Data: " << data
<< " Model: " << model_val << "\n";
}
});
}
// Starte Controller-Thread
controller = std::thread([this] {
controller_thread();
// Controller-Thread erstellen
threads.emplace_back([this] {
std::mt19937 gen(std::random_device{}());
while (running) {
// Zufälliges Update-Intervall (500-2000ms)
std::this_thread::sleep_for(
std::chrono::milliseconds(500 + gen() % 1500));
// Analysemodell aktualisieren
model.write(gen() % 100);
}
});
}
/**
* Stoppt alle Threads und wartet auf Beendigung
* Stoppt das Sensornetzwerk und wartet auf Threads
*/
template <size_t N>
void SensorNetwork<N>::stop() {
running = false;
running = false; // Signal zum Stoppen
// Warte auf Thread-Ende
for(auto& t : sensors) {
// Auf alle Threads warten
for (auto& t : threads) {
if (t.joinable()) t.join();
}
for(auto& t : analysers) {
if (t.joinable()) t.join();
}
if (controller.joinable()) {
controller.join();
}
}
/**
* Thread-Funktion für Sensoren (Producer)
* @param id Eindeutige ID des Sensors
*
* Funktionsweise:
* 1. Generiert zufällige Messwerte
* 2. Wartet zufällige Zeit (Messintervall)
* 3. Schreibt Daten in Ringpuffer
*/
template <size_t N>
void SensorNetwork<N>::sensor_thread(int id) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> data_gen(0, 100); // Messwerte 0-100
std::uniform_int_distribution<> sleep_gen(100, 500); // Intervall 100-500ms
while(running) {
// Simuliere Messintervall
std::this_thread::sleep_for(
std::chrono::milliseconds(sleep_gen(gen))
);
// Generiere und schreibe Messwert
int value = data_gen(gen);
buffer.push(value);
std::cout << "Sensor " << id << " produced: " << value << "\n";
}
}
/**
* Thread-Funktion für Analyse-Module (Consumer)
* @param id Eindeutige ID des Moduls
*
* Funktionsweise:
* 1. Liest Daten aus Ringpuffer (blockierend)
* 2. Liest aktuelles Analysemodell
* 3. Verarbeitet Daten (hier nur Ausgabe)
*/
template <size_t N>
void SensorNetwork<N>::analyser_thread(int id) {
while(running) {
// Blockierendes Lesen aus Puffer
int data = buffer.pop();
// Lesender Zugriff auf Analysemodell
int model_value = model.read();
std::cout << "Analyser " << id << " processed: " << data
<< " | Model: " << model_value << "\n";
}
}
/**
* Thread-Funktion für System-Controller (Writer)
*
* Funktionsweise:
* 1. Wartet zufällige Zeit zwischen Updates
* 2. Schreibt neuen Wert ins Analysemodell
*/
template <size_t N>
void SensorNetwork<N>::controller_thread() {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> update_gen(0, 100); // Modellwerte
std::uniform_int_distribution<> sleep_gen(500, 2000); // Update-Intervall
while(running) {
// Warte bis zum nächsten Update
std::this_thread::sleep_for(
std::chrono::milliseconds(sleep_gen(gen))
);
// Aktualisiere Analysemodell
int new_value = update_gen(gen);
model.write(new_value);
std::cout << "Controller updated model to: " << new_value << "\n";
}
}
// Explizite Instanziierung für gängige Puffergrößen
// Explizite Instanziierungen für gängige Puffergrößen
template class SensorNetwork<8>;
template class SensorNetwork<16>;
template class SensorNetwork<32>;

View file

@ -6,7 +6,7 @@
#include "analysis_model.h"
/**
* Hauptklasse des Sensornetzwerks
* Hauptklasse für das Sensornetzwerk
* @tparam N Größe des Ringpuffers
*
* Verwaltet alle Komponenten:
@ -16,26 +16,14 @@
*/
template <size_t N>
class SensorNetwork {
RingBuffer<N> buffer; // Gemeinsamer Datenpuffer
AnalysisModel model; // Geteiltes Analysemodell
std::atomic<bool> running{false}; // Steuerflag für Threads
// Thread-Container
std::vector<std::thread> sensors;
std::vector<std::thread> analysers;
std::thread controller;
RingBuffer<N> buffer; // Gemeinsamer Datenpuffer
AnalysisModel model; // Geteiltes Analysemodell
std::atomic<bool> running = false; // Steuerflag für Threads
std::vector<std::thread> threads; // Alle Threads
public:
~SensorNetwork() {
if (running) stop();
}
~SensorNetwork() { if (running) stop(); }
void start(size_t num_sensors, size_t num_analysers);
void start(size_t sensors, size_t analysers);
void stop();
private:
// Thread-Funktionen
void sensor_thread(int id);
void analyser_thread(int id);
void controller_thread();
};