Compare commits
3 commits
master
...
extremelyS
| Author | SHA1 | Date | |
|---|---|---|---|
| 1323b16890 | |||
| b12ae5b0cb | |||
| 70aad3fe1c |
7 changed files with 132 additions and 352 deletions
|
|
@ -1,4 +1,4 @@
|
|||
/* ### Erklärung der Praktikumsaufgabe (Synchronisation)
|
||||
### Erklärung der Praktikumsaufgabe (Synchronisation)
|
||||
|
||||
#### **Kernziel der Aufgabe**
|
||||
Sie sollen ein **multithreaded Sensornetzwerk** simulieren, das drei Komponenten umfasst:
|
||||
|
|
@ -151,5 +151,4 @@ Starten Sie das System mit verschiedenen Parametern und beobachten Sie:
|
|||
Mit dieser Struktur erfüllen Sie alle Lernziele:
|
||||
✅ Reader-Writer-Problem
|
||||
✅ Producer-Consumer-Pattern
|
||||
✅ Vermeidung von Race Conditions & Deadlocks!
|
||||
*/
|
||||
✅ Vermeidung von Race Conditions & Deadlocks!
|
||||
|
|
@ -1,75 +1,32 @@
|
|||
#pragma once
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
|
||||
/**
|
||||
* Implementiert das Reader-Writer Problem mit:
|
||||
* - Mehrere gleichzeitige Leser
|
||||
* - Exklusiver Zugriff für Schreiber
|
||||
* - Verhindert Writer-Starvation
|
||||
* Thread-sicheres Analysemodell
|
||||
* Vereinfachte Implementierung mit:
|
||||
* - Einfachem Mutex-Schutz (kein Reader-Writer-Lock)
|
||||
* - Für seltene Schreibzugriffe geeignet
|
||||
*/
|
||||
class AnalysisModel {
|
||||
int value = 0; // Das geteilte Analysemodell (vereinfacht)
|
||||
int reader_count = 0; // Zählt aktive Leser
|
||||
|
||||
// Synchronisationsprimitive
|
||||
std::mutex model_mutex; // Schützt Schreibzugriffe (exklusiv)
|
||||
std::mutex count_mutex; // Schützt Leserzähler
|
||||
std::condition_variable no_writer; // Garantiert Fairness
|
||||
int value = 0; // Der gespeicherte Wert
|
||||
std::mutex mtx; // Schützt Lese/Schreibzugriffe
|
||||
|
||||
public:
|
||||
/**
|
||||
* Lesender Zugriff
|
||||
* @return Aktueller Wert des Modells
|
||||
*
|
||||
* Funktionsweise:
|
||||
* 1. Sperrt count_mutex und inkrementiert reader_count
|
||||
* 2. Erster Leser sperrt model_mutex (blockiert Writer)
|
||||
* 3. Entsperrt count_mutex während des Lesens
|
||||
* 4. Liest Wert
|
||||
* 5. Sperrt count_mutex zum Dekrementieren
|
||||
* 6. Letzter Leser entsperrt model_mutex und benachrichtigt Writer
|
||||
* Liest den aktuellen Wert
|
||||
* @return Der gespeicherte Wert
|
||||
*/
|
||||
int read() {
|
||||
std::unique_lock<std::mutex> count_lock(count_mutex);
|
||||
reader_count++;
|
||||
|
||||
// Erster Leser sperrt für Writer
|
||||
if(reader_count == 1) {
|
||||
model_mutex.lock();
|
||||
}
|
||||
count_lock.unlock();
|
||||
|
||||
// Kritischer Abschnitt (Lesen, kann parallel erfolgen)
|
||||
int result = value;
|
||||
|
||||
count_lock.lock();
|
||||
reader_count--;
|
||||
// Letzter Leser gibt für Writer frei
|
||||
if(reader_count == 0) {
|
||||
model_mutex.unlock();
|
||||
no_writer.notify_one();
|
||||
}
|
||||
|
||||
return result;
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
return value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Schreibender Zugriff
|
||||
* @param new_value Neuer Wert für das Modell
|
||||
*
|
||||
* Funktionsweise:
|
||||
* 1. Sperrt model_mutex (exklusiver Zugriff)
|
||||
* 2. Schreibt neuen Wert
|
||||
* 3. Wartet bis alle Leser fertig sind (Starvation Prevention)
|
||||
* Schreibt einen neuen Wert
|
||||
* @param new_val Der neue Wert
|
||||
*/
|
||||
void write(int new_value) {
|
||||
std::unique_lock<std::mutex> lock(model_mutex);
|
||||
value = new_value;
|
||||
|
||||
// Verhindert Writer-Starvation
|
||||
no_writer.wait(lock, [this]() {
|
||||
return reader_count == 0;
|
||||
});
|
||||
void write(int new_val) {
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
value = new_val;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
|
|
|||
102
main.cpp
102
main.cpp
|
|
@ -1,90 +1,26 @@
|
|||
#include "sensor_network.h"
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <limits>
|
||||
#include <thread>
|
||||
|
||||
// Standardkonfiguration
|
||||
constexpr size_t DEFAULT_NUM_SENSORS = 3;
|
||||
constexpr size_t DEFAULT_NUM_ANALYSERS = 2;
|
||||
constexpr int DEFAULT_RUN_TIME = 30; // Sekunden
|
||||
constexpr size_t DEFAULT_BUFFER_SIZE = 8;
|
||||
|
||||
/**
|
||||
* Führt die Simulation mit gegebenen Parametern aus
|
||||
* @tparam N Puffergröße
|
||||
* Hauptprogramm
|
||||
* Startet die Simulation mit festen Parametern
|
||||
* (Könnte leicht für interaktive Eingabe erweitert werden)
|
||||
*/
|
||||
template<size_t N>
|
||||
void run_simulation(size_t num_sensors, size_t num_analysers, int run_time) {
|
||||
SensorNetwork<N> network;
|
||||
std::cout << "\n=== Simulation gestartet ===\n"
|
||||
<< "Sensoren: " << num_sensors << "\n"
|
||||
<< "Analysemodule: " << num_analysers << "\n"
|
||||
<< "Puffergröße: " << N << "\n"
|
||||
<< "Laufzeit: " << run_time << "s\n\n";
|
||||
|
||||
network.start(num_sensors, num_analysers);
|
||||
std::this_thread::sleep_for(std::chrono::seconds(run_time));
|
||||
network.stop();
|
||||
|
||||
std::cout << "\n=== Simulation beendet ===\n";
|
||||
}
|
||||
|
||||
/**
|
||||
* Liest Benutzereingabe mit Standardwert
|
||||
* @param prompt Eingabeaufforderung
|
||||
* @param default_value Standardwert bei leerer Eingabe
|
||||
* @return Eingegebener oder Standardwert
|
||||
*/
|
||||
size_t get_input(const std::string& prompt, size_t default_value) {
|
||||
std::cout << prompt << " [" << default_value << "]: ";
|
||||
std::string input;
|
||||
std::getline(std::cin, input);
|
||||
|
||||
// Verwende Standardwert bei leerer Eingabe
|
||||
if(input.empty()) return default_value;
|
||||
|
||||
// Konvertiere Eingabe
|
||||
try {
|
||||
return std::stoul(input);
|
||||
} catch(...) {
|
||||
std::cout << "Ungültige Eingabe. Verwende Standardwert: "
|
||||
<< default_value << "\n";
|
||||
return default_value;
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
std::cout << "=== Sensornetzwerk-Simulation ===\n"
|
||||
<< "(Leere Eingabe verwendet Standardwerte)\n";
|
||||
|
||||
// Interaktive Konfiguration
|
||||
size_t num_sensors = get_input("Anzahl Sensoren", DEFAULT_NUM_SENSORS);
|
||||
size_t num_analysers = get_input("Anzahl Analysemodule", DEFAULT_NUM_ANALYSERS);
|
||||
int run_time = static_cast<int>(
|
||||
get_input("Laufzeit (Sekunden)", DEFAULT_RUN_TIME)
|
||||
);
|
||||
size_t buffer_size = get_input("Puffergröße", DEFAULT_BUFFER_SIZE);
|
||||
|
||||
// Starte Simulation basierend auf Puffergröße
|
||||
switch(buffer_size) {
|
||||
case 8:
|
||||
run_simulation<8>(num_sensors, num_analysers, run_time);
|
||||
break;
|
||||
case 16:
|
||||
run_simulation<16>(num_sensors, num_analysers, run_time);
|
||||
break;
|
||||
case 32:
|
||||
run_simulation<32>(num_sensors, num_analysers, run_time);
|
||||
break;
|
||||
default:
|
||||
std::cout << "Nicht unterstützte Puffergröße. Verwende Standard ("
|
||||
<< DEFAULT_BUFFER_SIZE << ")\n";
|
||||
run_simulation<DEFAULT_BUFFER_SIZE>(
|
||||
num_sensors, num_analysers, run_time
|
||||
);
|
||||
}
|
||||
|
||||
std::cout << "Simulation erfolgreich abgeschlossen.\n";
|
||||
// Netzwerk mit Puffergröße 8 erstellen
|
||||
SensorNetwork<8> network;
|
||||
|
||||
std::cout << "Starting simulation...\n";
|
||||
|
||||
// 2 Sensoren und 2 Analyse-Module starten
|
||||
network.start(2, 2);
|
||||
|
||||
// 30 Sekunden laufen lassen
|
||||
std::this_thread::sleep_for(std::chrono::seconds(30));
|
||||
|
||||
// Netzwerk stoppen
|
||||
network.stop();
|
||||
|
||||
std::cout << "Simulation finished\n";
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
|
|
|||
113
ring_buffer.h
113
ring_buffer.h
|
|
@ -1,104 +1,63 @@
|
|||
#pragma once
|
||||
#include <vector>
|
||||
#include <cstddef>
|
||||
#include <array>
|
||||
#include <mutex>
|
||||
#include <condition_variable>
|
||||
|
||||
/**
|
||||
* Thread-sicherer Ringpuffer mit fester Größe
|
||||
* @tparam N Größe des Puffers (muss > 1 sein)
|
||||
*
|
||||
* Implementiert das Producer-Consumer Pattern mit:
|
||||
* Thread-sicherer Ringpuffer mit fester Größe N
|
||||
* Implementiert das Producer-Consumer-Pattern mit:
|
||||
* - Mutex für exklusiven Zugriff
|
||||
* - Condition Variable für blockierendes Pop
|
||||
* - Condition Variable für blockierendes Lesen
|
||||
* - Überschreibt älteste Daten bei vollem Puffer
|
||||
*/
|
||||
template <size_t N>
|
||||
class RingBuffer {
|
||||
static_assert(N > 1, "Buffer size must be greater than 1");
|
||||
std::array<int, N> data; // Speicher für die Elemente
|
||||
size_t read = 0; // Lese-Position
|
||||
size_t write = 0; // Schreib-Position
|
||||
bool full = false; // Flag für vollen Puffer
|
||||
|
||||
private:
|
||||
std::vector<int> data; // Speicher für Elemente
|
||||
size_t read_ptr = 0; // Lesezeiger (nächstes zu lesendes Element)
|
||||
size_t write_ptr = 0; // Schreibzeiger (nächstes freie Position)
|
||||
bool full = false; // Flag, ob Puffer voll ist
|
||||
|
||||
// Synchronisationsprimitive
|
||||
std::mutex mtx; // Schützt alle internen Zustände
|
||||
std::condition_variable not_empty; // Signalisiert, dass Daten verfügbar sind
|
||||
|
||||
// Hilfsfunktion: Zeiger mit Ringverhalten bewegen
|
||||
size_t advance(size_t ptr) const {
|
||||
return (ptr + 1) % N;
|
||||
}
|
||||
std::mutex mtx; // Schützt alle Zugriffe
|
||||
std::condition_variable cv; // Synchronisiert Leser
|
||||
|
||||
public:
|
||||
RingBuffer() : data(N, 0) {}
|
||||
|
||||
/**
|
||||
* Schreibt Wert in den Puffer
|
||||
* Schreibt einen Wert in den Puffer
|
||||
* @param value Der zu schreibende Wert
|
||||
*
|
||||
* Funktionsweise:
|
||||
* 1. Sperrt Mutex für exklusiven Zugriff
|
||||
* 2. Schreibt Wert an aktueller write_ptr
|
||||
* 3. Bei vollem Puffer: Bewegt read_ptr (überschreibt ältesten Wert)
|
||||
* 4. Aktualisiert write_ptr und full-Flag
|
||||
* 5. Benachrichtigt einen wartenden Consumer
|
||||
* Funktionsablauf:
|
||||
* 1. Sperrt den Puffer mit Mutex
|
||||
* 2. Schreibt Wert an aktueller Position
|
||||
* 3. Überschreibt ältesten Wert wenn voll
|
||||
* 4. Aktualisiert Schreib-Position
|
||||
* 5. Benachrichtigt wartende Leser
|
||||
*/
|
||||
void push(int value) {
|
||||
std::unique_lock<std::mutex> lock(mtx);
|
||||
|
||||
// Schreibe Wert
|
||||
data[write_ptr] = value;
|
||||
|
||||
// Überschreibe ältesten Wert bei vollem Puffer
|
||||
if(full) {
|
||||
read_ptr = advance(read_ptr);
|
||||
}
|
||||
|
||||
// Zeiger aktualisieren
|
||||
write_ptr = advance(write_ptr);
|
||||
full = (write_ptr == read_ptr);
|
||||
|
||||
// Benachrichtige einen wartenden Consumer
|
||||
not_empty.notify_one();
|
||||
std::lock_guard<std::mutex> lock(mtx);
|
||||
data[write] = value;
|
||||
write = (write + 1) % N; // Ringverhalten
|
||||
if (full) read = (read + 1) % N; // Überschreiben
|
||||
full = (write == read); // Update Voll-Flag
|
||||
cv.notify_one(); // Wecke einen Leser
|
||||
}
|
||||
|
||||
/**
|
||||
* Liest Wert aus dem Puffer (blockierend)
|
||||
* Liest einen Wert aus dem Puffer (blockierend)
|
||||
* @return Der gelesene Wert
|
||||
*
|
||||
* Funktionsweise:
|
||||
* 1. Sperrt Mutex
|
||||
* 2. Wartet mit Condition Variable bis Daten verfügbar
|
||||
* 3. Liest Wert an read_ptr
|
||||
* 4. Aktualisiert read_ptr und full-Flag
|
||||
* 5. Gibt Wert zurück
|
||||
* Funktionsablauf:
|
||||
* 1. Sperrt den Puffer
|
||||
* 2. Wartet bis Daten verfügbar
|
||||
* 3. Liest Wert und aktualisiert Position
|
||||
* 4. Gibt Wert zurück
|
||||
*/
|
||||
int pop() {
|
||||
std::unique_lock<std::mutex> lock(mtx);
|
||||
|
||||
// Warte bis Daten verfügbar (verhindert Busy Waiting)
|
||||
not_empty.wait(lock, [this]() {
|
||||
return !is_empty();
|
||||
});
|
||||
|
||||
// Lese und aktualisiere Zustand
|
||||
int value = data[read_ptr];
|
||||
read_ptr = advance(read_ptr);
|
||||
full = false;
|
||||
|
||||
return value;
|
||||
// Warte bis Daten da sind (verhindert Busy Waiting)
|
||||
cv.wait(lock, [this]{ return full || write != read; });
|
||||
int val = data[read];
|
||||
read = (read + 1) % N; // Ringverhalten
|
||||
full = false; // Nicht mehr voll
|
||||
return val;
|
||||
}
|
||||
|
||||
// Prüft ob Puffer leer ist
|
||||
bool is_empty() const {
|
||||
return !full && (read_ptr == write_ptr);
|
||||
}
|
||||
|
||||
// Prüft ob Puffer voll ist
|
||||
bool is_full() const {
|
||||
return full;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
|
|
|||
BIN
sensor_network
BIN
sensor_network
Binary file not shown.
|
|
@ -4,135 +4,76 @@
|
|||
#include <chrono>
|
||||
|
||||
/**
|
||||
* Startet alle Threads des Netzwerks
|
||||
* @param num_sensors Anzahl der Sensor-Threads
|
||||
* @param num_analysers Anzahl der Analyse-Threads
|
||||
* Startet das Sensornetzwerk
|
||||
* @param sensors Anzahl der Sensor-Threads
|
||||
* @param analysers Anzahl der Analyse-Threads
|
||||
*/
|
||||
template <size_t N>
|
||||
void SensorNetwork<N>::start(size_t num_sensors, size_t num_analysers) {
|
||||
void SensorNetwork<N>::start(size_t sensors, size_t analysers) {
|
||||
running = true;
|
||||
|
||||
// Starte Sensor-Threads
|
||||
for(size_t i = 0; i < num_sensors; ++i) {
|
||||
sensors.emplace_back([this, i] {
|
||||
sensor_thread(i);
|
||||
|
||||
// Sensor-Threads erstellen
|
||||
for (size_t i = 0; i < sensors; ++i) {
|
||||
threads.emplace_back([this] {
|
||||
std::mt19937 gen(std::random_device{}());
|
||||
std::uniform_int_distribution<> dist(0, 100);
|
||||
|
||||
while (running) {
|
||||
// Zufälliges Intervall (100-500ms)
|
||||
std::this_thread::sleep_for(
|
||||
std::chrono::milliseconds(100 + gen() % 400));
|
||||
|
||||
// Messwert generieren und speichern
|
||||
buffer.push(dist(gen));
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Starte Analyse-Threads
|
||||
for(size_t i = 0; i < num_analysers; ++i) {
|
||||
analysers.emplace_back([this, i] {
|
||||
analyser_thread(i);
|
||||
// Analyse-Threads erstellen
|
||||
for (size_t i = 0; i < analysers; ++i) {
|
||||
threads.emplace_back([this] {
|
||||
while (running) {
|
||||
// Daten aus Puffer lesen
|
||||
int data = buffer.pop();
|
||||
|
||||
// Analysemodell lesen
|
||||
int model_val = model.read();
|
||||
|
||||
// Ausgabe (könnte auch analysieren)
|
||||
std::cout << "Data: " << data
|
||||
<< " Model: " << model_val << "\n";
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Starte Controller-Thread
|
||||
controller = std::thread([this] {
|
||||
controller_thread();
|
||||
// Controller-Thread erstellen
|
||||
threads.emplace_back([this] {
|
||||
std::mt19937 gen(std::random_device{}());
|
||||
while (running) {
|
||||
// Zufälliges Update-Intervall (500-2000ms)
|
||||
std::this_thread::sleep_for(
|
||||
std::chrono::milliseconds(500 + gen() % 1500));
|
||||
|
||||
// Analysemodell aktualisieren
|
||||
model.write(gen() % 100);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Stoppt alle Threads und wartet auf Beendigung
|
||||
* Stoppt das Sensornetzwerk und wartet auf Threads
|
||||
*/
|
||||
template <size_t N>
|
||||
void SensorNetwork<N>::stop() {
|
||||
running = false;
|
||||
|
||||
// Warte auf Thread-Ende
|
||||
for(auto& t : sensors) {
|
||||
running = false; // Signal zum Stoppen
|
||||
|
||||
// Auf alle Threads warten
|
||||
for (auto& t : threads) {
|
||||
if (t.joinable()) t.join();
|
||||
}
|
||||
for(auto& t : analysers) {
|
||||
if (t.joinable()) t.join();
|
||||
}
|
||||
if (controller.joinable()) {
|
||||
controller.join();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Thread-Funktion für Sensoren (Producer)
|
||||
* @param id Eindeutige ID des Sensors
|
||||
*
|
||||
* Funktionsweise:
|
||||
* 1. Generiert zufällige Messwerte
|
||||
* 2. Wartet zufällige Zeit (Messintervall)
|
||||
* 3. Schreibt Daten in Ringpuffer
|
||||
*/
|
||||
template <size_t N>
|
||||
void SensorNetwork<N>::sensor_thread(int id) {
|
||||
std::random_device rd;
|
||||
std::mt19937 gen(rd());
|
||||
std::uniform_int_distribution<> data_gen(0, 100); // Messwerte 0-100
|
||||
std::uniform_int_distribution<> sleep_gen(100, 500); // Intervall 100-500ms
|
||||
|
||||
while(running) {
|
||||
// Simuliere Messintervall
|
||||
std::this_thread::sleep_for(
|
||||
std::chrono::milliseconds(sleep_gen(gen))
|
||||
);
|
||||
|
||||
// Generiere und schreibe Messwert
|
||||
int value = data_gen(gen);
|
||||
buffer.push(value);
|
||||
|
||||
std::cout << "Sensor " << id << " produced: " << value << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Thread-Funktion für Analyse-Module (Consumer)
|
||||
* @param id Eindeutige ID des Moduls
|
||||
*
|
||||
* Funktionsweise:
|
||||
* 1. Liest Daten aus Ringpuffer (blockierend)
|
||||
* 2. Liest aktuelles Analysemodell
|
||||
* 3. Verarbeitet Daten (hier nur Ausgabe)
|
||||
*/
|
||||
template <size_t N>
|
||||
void SensorNetwork<N>::analyser_thread(int id) {
|
||||
while(running) {
|
||||
// Blockierendes Lesen aus Puffer
|
||||
int data = buffer.pop();
|
||||
|
||||
// Lesender Zugriff auf Analysemodell
|
||||
int model_value = model.read();
|
||||
|
||||
std::cout << "Analyser " << id << " processed: " << data
|
||||
<< " | Model: " << model_value << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Thread-Funktion für System-Controller (Writer)
|
||||
*
|
||||
* Funktionsweise:
|
||||
* 1. Wartet zufällige Zeit zwischen Updates
|
||||
* 2. Schreibt neuen Wert ins Analysemodell
|
||||
*/
|
||||
template <size_t N>
|
||||
void SensorNetwork<N>::controller_thread() {
|
||||
std::random_device rd;
|
||||
std::mt19937 gen(rd());
|
||||
std::uniform_int_distribution<> update_gen(0, 100); // Modellwerte
|
||||
std::uniform_int_distribution<> sleep_gen(500, 2000); // Update-Intervall
|
||||
|
||||
while(running) {
|
||||
// Warte bis zum nächsten Update
|
||||
std::this_thread::sleep_for(
|
||||
std::chrono::milliseconds(sleep_gen(gen))
|
||||
);
|
||||
|
||||
// Aktualisiere Analysemodell
|
||||
int new_value = update_gen(gen);
|
||||
model.write(new_value);
|
||||
|
||||
std::cout << "Controller updated model to: " << new_value << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
// Explizite Instanziierung für gängige Puffergrößen
|
||||
// Explizite Instanziierungen für gängige Puffergrößen
|
||||
template class SensorNetwork<8>;
|
||||
template class SensorNetwork<16>;
|
||||
template class SensorNetwork<32>;
|
||||
template class SensorNetwork<32>;
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@
|
|||
#include "analysis_model.h"
|
||||
|
||||
/**
|
||||
* Hauptklasse des Sensornetzwerks
|
||||
* Hauptklasse für das Sensornetzwerk
|
||||
* @tparam N Größe des Ringpuffers
|
||||
*
|
||||
* Verwaltet alle Komponenten:
|
||||
|
|
@ -16,26 +16,14 @@
|
|||
*/
|
||||
template <size_t N>
|
||||
class SensorNetwork {
|
||||
RingBuffer<N> buffer; // Gemeinsamer Datenpuffer
|
||||
AnalysisModel model; // Geteiltes Analysemodell
|
||||
std::atomic<bool> running{false}; // Steuerflag für Threads
|
||||
|
||||
// Thread-Container
|
||||
std::vector<std::thread> sensors;
|
||||
std::vector<std::thread> analysers;
|
||||
std::thread controller;
|
||||
RingBuffer<N> buffer; // Gemeinsamer Datenpuffer
|
||||
AnalysisModel model; // Geteiltes Analysemodell
|
||||
std::atomic<bool> running = false; // Steuerflag für Threads
|
||||
std::vector<std::thread> threads; // Alle Threads
|
||||
|
||||
public:
|
||||
~SensorNetwork() {
|
||||
if (running) stop();
|
||||
}
|
||||
~SensorNetwork() { if (running) stop(); }
|
||||
|
||||
void start(size_t num_sensors, size_t num_analysers);
|
||||
void start(size_t sensors, size_t analysers);
|
||||
void stop();
|
||||
|
||||
private:
|
||||
// Thread-Funktionen
|
||||
void sensor_thread(int id);
|
||||
void analyser_thread(int id);
|
||||
void controller_thread();
|
||||
};
|
||||
};
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue